Spring 2013 - 63096 - PA397C - Advanced Empirical Methods for Policy Analysis

Quantitative Methods for Social Policy Analysis

Course Objective: AEM is the second course in the empirical methods sequence in the MPAff core curriculum. This section is an extension of the statistical inference portion of IEM.
This section is structured around research issues in social policy analysis and program evaluation, but no background in social policy is needed. We will use empirical studies in social policy research merely as the context to work towards the actual learning objective. That objective is to develop conceptual logic as well as practical skills in statistical analysis of policy issues. The logic and skills learned in this course is of course applicable to other policy areas as well.
The substantive content of the course is about 50 percent on understanding regression analysis—we will review concepts learned in IEM before moving on to advanced issues; and 50 percent on practical knowledge about research design, national data files, and hands-on data-analytic skills using Stata as statistical software.
Learning Experience:While “textbook” type reading suggestions will be offered by the instructor, course materials are organized mostly around actual empirical research articles. Class members will be asked to read carefully and analytically one empirical article each week on average. The purpose is to help develop the thought process in formulating and implementing analytic research.
The second major component of this course is an independent research project—team-based or individual-based depending on class size—which each student will start working on from the beginning of the semester. This research project will require (1) the formulation of an empirical research problem, (2) the use of a data set to analyze the problem, (3) the completion of a research brief for interpretation, and (4) a class presentation to teach class members the analytic issues involved. This is the “hands-on” part of the learning experience.
In addition to the two primary learning components above, the course will also include two individual-based, open-book, four-hour exercises on two designated Fridays, one around the fifth or sixth week and the other around the tenth or eleventh week of the semester.
Expectations: Successful completion of IEM at the LBJ School or its equivalent is a prerequisite. In particular, it is good understanding in the statistical analysis (not decision optimization) segment of IEM which is important for this course. Background in social policy is not necessary. Interest in thinking about the analytic research process will be very helpful. Class members can vote, on a majoritarian basis, whether to take notes in class or to refrain from note-taking in exchange for weekly notes from the instructor.
Tentative Organization of Topics
Wk 1      Conceptual Review 1: Research design and inferential logic
Wk 2      Conceptual Review 2: OLS Regression model and use of social data
Wk 3      Conceptual Review 3: Assumption violation in OLS Regression
Wk 4      Research Design: Level of data aggregation and targeting problem
Wk 5      Research Design: Social experiment, regression discontinuity, propensity scores
Wk 6      Limited-Criteria Models: Logic and use of logit, probit, and tobit models
Wk 7      Advanced issues in regression analysis
Wk 8      Social Indicators: Measurement of social phenomena
Wk 9      Integrative applications: Analysis of empirical research articles
Wk 10    Integrative applications: Analysis of empirical research articles
Wk 11    Revisiting Basic Issues in Statistical Logic
Wk 12    Project Presentations
Wk 13    Project Presentations
Wk 14    Project Presentations
(One empirical article each week from Week 4 to Week 8, and two  in Weeks 9 and 10.)