Fall 2013 - 63865 - PA397 - Introduction to Empirical Methods for Policy Analysis

This is the first of a two-course core sequence designed to develop tools and communications skills involving the application of quantitative methods to public policy analysis. All the sections of Empirical Methods for Policy Analysis are organized around three broad topics: Optimization, decisionmaking, and statistical modeling. Specific topics treated in this section include:

   The art and science of modeling
    Spreadsheet simulation, optimization, and statistics
    Mathematical programming models
    Decision modeling
    Risk and uncertainty
    Probability models
    Linear regression models
    Statistical inference: Weighing evidence & testing hypotheses

This course is similar to a traditional second-semester graduate course in statistics, yet goes beyond a traditional statistics course in several ways. One way it does this is by organizing the material around the topics of decisionmaking and optimization. Another is that it stresses the importance of sensitivity analysis over conventional statistical significance throughout. A model, theory, or approach that is less sensitive to changes in underlying assumptions is more robust and more believable than one that is not. A third way in which this course differs from a typical statistics course is the attention given to conceptual foundations of probability theory that go beyond the usual textbook treatment of repeated sampling.

This section of IEM assumes that you are familiar with basic differential calculus, the rudiments of probability, and simple descriptive statistics. It also assumes that you are comfortable with elementary algebra (ie, that at the very minimum you know how to interpret an intercept and a slope coefficient) and are capable of learning how to work with both summation notation and basic matrix algebra.