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Skewness

Paul von Hippel, Ohio State University, USA

Skewness is a measure of distributional asymmetry. Conceptually, skewness describes which 
side of a distribution has a longer tail. If the long tail is on the right, then the skewness is 
rightward or positive; if the long tail is on the left, then the skewness is leftward or negative. 
Right skewness is common when a variable is bounded on the left but unbounded on the right. 
For example, durations (response time, time to failure) typically have right skewness since they 
cannot take values less than zero; many financial variables (income, wealth, prices) typically
have right skewness since they rarely take values less than zero; and adult body weight has right 
skewness since most people are closer to the lower limit than to the upper limit of viable body 
weight. Left skewness is less common in practice, but it can occur when a variable tends to be 
closer to its maximum than its minimum value. For example, scores on an easy exam are likely 
to have left skewness, with most scores close to 100% and lower scores tailing off to the left. 
Well-known right-skewed distributions include the Poisson, chi-square, exponential, lognormal, 
and gamma distributions. We are not aware of any widely used distributions that always have left
skewness, but there are several distributions that can have either right or left skew depending on 
their parameters. Such ambidextrous distributions include the binomial and the beta.

Mathematically, skew is usually measured by the third standardized moment E ((X – )/)3), 
where X is a random variable with mean  and standard deviation . The third standardized 
moment can take any positive or negative value, although in practical settings it rarely exceeds 2 or 3 in 
absolute value. Because it involves cubed values, the third standardized moment is sensitive to outliers 
(Kim & White 2004), and it can even be undefined for heavy-tailed distributions such as the Cauchy
density or the Pareto density with a shape parameter of 3 . When the third standardized moment is finite, 
it is zero for symmetric distributions, although a value of zero does not necessarily mean that the 
distribution is symmetric (Ord 1968; Johnson and Kotz 1970, p. 253). To estimate the third 
standardized moment from a sample of n observations, a biased but simple estimator is the third 
sample moment 1/n  (x- x )/s)3, where x  is the sample mean and s is the sample standard deviation. 
An unbiased estimator is the third k statistic, which is obtained by taking the third sample moment and 
replacing 1/n with the quantity n / ((n – 1)(n – 2)) (Rose and Smith 2002).

Although the third standardized moment is far and away the most popular definition of skew, 
alternative definitions have been proposed (MacGillivray 1986). The leading alternatives are 
bounded by –1 and +1, and are zero for symmetric distributions, although again a value of zero 
does not guarantee symmetry. One alternative is Bowley’s (1920) quartile formula for skew:
((q3 –m) – (m – q1)) / (q3 – q1), or more simply (q1 + q3 – 2m) / (q3 – q1), where m is the median 
and q1 and q3 are the first (or left) and third (or right) quartiles. Bowley’s skew focuses on the 
part of the distribution that fits in between the quartiles: if the right quartile is further from the 
median than is the left quartile, then Bowley’s skew is positive; if the left quartile is further from 
the median than the right quartile, then Bowley’s skew is negative. Because it doesn’t cube any 
values and doesn’t use any values more extreme than the quartiles, Bowley’s skew is more 
robust to outliers than is the conventional third-moment formula (Kim & White 2004). But the 
quantities in Bowley’s formula are arbitrary: instead of the left and right quartiles—i.e., the 25th

and 75th percentiles—Bowley could just as plausibly have used the 20th and 80th percentiles, the 
10th and 90th percentiles, or more generally the 100pth and 100(1 – p)th percentiles F-1(p) and 
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F-1(1 – p). Substituting these last two expressions into Bowley’s formula, Hinkley (1975) 
proposed the generalized skew formula (F-1(1 – p) + F-1(p) – 2 m) / (F-1(1 – p) – F-1(p)), which is 
a function of high and low percentiles defined by p. Since it is not clear what value of p is most 
appropriate, Groeneveld & Meeden (1984) averaged Hinkley’s formula across all ps from 0 to 
0.5. Groeneveld & Meeden’s average was ( – m) / E |X – m|, which is close to an old skew 
formula that is attributed to Pearson: ( – m) /  (Yule 1911).

The Pearson and Groeneveld-Meeden formulas are consistent with a widely taught rule of thumb 
claiming that the skew determines the relative positions of the median and mean. According to 
this rule, in a distribution with positive skew the mean lies to the right of the median, and in a 
distribution with negative skew the mean lies to the left of the median. If we define skew using 
the Pearson or Groeneveld-Meeden formulas, this rule is self-evident: since the numerator of 
both formulas is simply the difference between the mean and the median, both will give positive 
skew when the mean is greater than the median, and negative skew when the situation is 
reversed. But if we define skew more conventionally, using the third standardized moment, the
rule of thumb can fail. Violations of the rule are rare for continuous variables, but common for 
discrete variables (von Hippel 2005). A simple discrete violation is the binomial distribution with 
n=10 and p=0.09 (cf. Lesser 2005). In this distribution, the mean 0.9 is left of the median 1, but 
the skew as defined by the third standardized moment is positive, at 0.906, and the distribution, 
with its long right tail, looks like a textbook example of positive skew. Examples like this one 
argue against using the Pearson, Groeneveld-Meeden, or Bowley formulas, all of which yield a 
negative value for this clearly right-skewed distribution. Most versions of Hinkley’s skew also 
contradict intuition here: Hinkley’s skew is negative for 0.5>p>0.225, zero for 0.225p>0.054, 
and doesn’t become positive until p0.054.

Since many statistical inferences assume that variables are symmetrically or even normally 
distributed, those inferences can be inaccurate if applied to a variable that is skewed. Inferences 
grow more accurate as the sample size grows, with the required sample size depending on the 
amount of skew and the desired level of accuracy. A reliable rule is that, if you are using the 
normal or t distribution to calculate a nominal 95% confidence interval for the mean of a skewed 
variable, the interval will have at least 94% coverage if the sample size is at least 25 times the 
absolute value of the (third-moment) skew (Cochran 1977, Boos & Hughes-Oliver 2000). For 
example, a sample of 50 observations should be plenty even if the skew is as large as 2 (or –2).

In order to use statistical techniques that assume symmetry, researchers sometimes transform a 
variable to reduce its skew (von Hippel 2003). The most common transformations for reducing 
positive skew are the logarithm and the square root, and a much broader family of skew-reducing 
transformations has been defined (Box an Cox 1964). But reducing skew has costs as well as 
benefits. A transformed variable can be hard to interpret, and conclusions about the transformed 
variable may not apply to the original variable before transformation (Levin, Liukkonen, & 
Levine, 1996). In addition, transformation can change the shape of relationships among 
variables; for example, if X is right-skewed and has a linear relationship with Y, then the square 
root of X, although less skewed, will have a curved relationship with Y (von Hippel 2010). In 
short, skew reduction is rarely by itself a sufficient reason to transform a variable. Skew should 
be treated as an important characteristic of the variable, not just a nuisance to be eliminated. 
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