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Abstract 

When fitting a generalized linear model—such as linear regression, logistic regression, or 

hierarchical linear modeling—analysts often wonder how to handle missing values of the 

dependent variable Y. If missing values have been filled in using multiple imputation, the 

usual advice is to use the imputed Y values in analysis. We show, however, that using 

imputed Ys can add needless noise to the estimates. Better estimates can usually be obtained 

using a modified strategy that we call multiple imputation, then deletion (MID). Under MID, 

all cases are used for imputation, but following imputation cases with imputed Y values are 

excluded from the analysis. When there is something wrong with the imputed Y values, MID 

protects the estimates from the problematic imputations. And when the imputed Y values are 

acceptable, MID usually offers somewhat more efficient estimates than an ordinary MI 

strategy.  

Key words: incomplete data; missing data; multiple imputation 
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1. MULTIPLE IMPUTATION, THEN DELETION (MID) 

Multiple imputation (MI) is an increasingly popular tool for analyzing data with missing 

values (Rubin 1987). As it is commonly used, MI is part of a four-step estimation strategy: 

1. Replication. Make multiple copies of the incomplete data set.  

2. Imputation. In each copy, replace each missing value with a plausible random 

imputation. (Imputations are drawn conditionally on the observed values of all of the 

variables.) 

3. Analysis. Analyze each imputed data set separately, using the standard methods that 

are used for complete data. 

4. Recombination. Combine the results of the separate analyses, using formulas that 

account for variation within and between the imputed data sets. 

Researchers often use MI when they are estimating the conditional distribution of an 

outcome Y given some inputs X=(X1,...,Xp). For example, analysts may use MI in estimating 

the parameters of a generalized linear model such as a normal or logistic regression, or a 

hierarchical linear model. 

Researchers often ask how they should handle the dependent variable Y. The easy question is 

whether Y should be used to impute X. The answer is yes (e.g., Allison 2002). If Y is not used 

to impute X, then X will be imputed as though it has no relationship to Y. When the imputed 
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data are analyzed, the estimated slope of Y on X will be biased toward zero, since a value of 

zero was tacitly assumed in imputation.1  

This paper focuses on a harder question, which is what to do with cases that are missing Y. 

The answer begins with two remarks in Little’s (1992) paper “Regression with Missing X’s,” 

p. 1227: 

1. “If the X’s are complete and the missing values of Y are missing at random, then the 

incomplete cases contribute no information to the regression of Y on X1,...,Xp.”  

In other words, when the X’s are complete, there is no need for imputation, because 

maximum-likelihood estimates can be obtained simply by deleting the cases with missing Y. 

Using imputed Y values in analysis would simply add noise to these estimates. On the other 

hand, Little continues, p. 1227, 

2. “if values of X are missing as well as Y, then cases with Y missing can provide a 

minor amount of information for the regression of interest, by improving prediction 

of missing X’s for cases with Y present.” 

                                                 

1 Imputers sometimes worry that, by including Y in the imputation step, they are assuming something 

unwarranted about the X-Y relationship. This concern is misplaced. By including Y in the imputations, you are 

not assuming that Y has any particular relationship with X; the relationship could be positive, negative or zero, 

and any of these possibilities will be accounted for by the imputation model. On the other hand, if you exclude 

Y from the imputations, you are making an assumption. You are assuming that there is no direct relationship 

between X and Y. 



 MID—5

This second remark implies that cases with missing Y should be used in the imputation step, 

since those cases may contain information that is useful for imputing X in other cases. But 

after imputation, cases with imputed Y have nothing more to contribute; when the data are 

analyzed, random variation in the imputed Y values adds nothing but noise to the estimates. 

In short, cases with missing Y are useful for imputation, but not for analysis.  

In light of this observation, we propose a new estimation strategy that we call multiple 

imputation, then deletion (MID). MID is just like a conventional MI strategy except that 

cases with imputed Y are deleted before analysis: 

1. Replication.  

2. Imputation.  

2½. Deletion. Delete all cases that have imputed values for Y.  

3. Analysis.  

4. Recombination.  

One advantage of MID is efficiency. Compared to an ordinary MI strategy (one that retains 

imputed Ys), MID tends to give less variable point estimates, more accurate standard-error 

estimates, and shorter confidence intervals with equal or higher coverage rates. To state these 

advantages in terms of hypothesis tests, MID tests tend to have greater power while 

maintaining equal or lower significance levels. MID’s advantage in efficiency is often minor, 

but it can be substantial when there are a lot of missing values and relatively few imputed 
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data sets.  

A second and perhaps more important advantage is that MID is robust to problems in the 

imputation model. Problems in imputing Y cannot affect MID estimates, because cases with 

imputed Y are deleted before analysis. Problems in imputing X may also have little effect if, 

as is often the case, missing Xs tend to occur in the same cases as missing Ys.  

The importance of deleting problematic imputations bears some emphasis because, in 

practice, there are several things that can go wrong when data are imputed. For example, 

nonlinear relationships, such as interactions, may be carelessly omitted from the imputation 

model (Allison 2002). And if the imputation model is specified carefully, the imputation 

software may have undocumented biases (Allison 2000; von Hippel 2004). Even if the 

software works well, it may have limited flexibility, so that the analyst has to impute skewed 

or discrete variables as though they were normal. An inappropriate assumption of normality 

can result in unrealistic imputations such as a negative body weight, or a dummy variable 

with a value of 0.6. To “fix” such unrealistic values, some analysts round or transform 

imputed values—but these fixes can introduce biases of their own (von Hippel under review; 

Horton, Lipsitz, and Parzen 2003; Allison 2005).  

In short, since imputation can go wrong in several ways, it seems desirable to reduce reliance 

on imputed values. MID does this.  

Like any missing-data method, MID relies on certain assumptions. In particular, MID 

assumes that missing Y values are ignorable (Little & Rubin 2002) in the sense that the 

unobserved Y values are similar to observed Y values from cases with similar values for X. In 
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addition, MID assumes that missing X values are ignorable in cases with missing Y. The 

assumption of ignorability is not unique to MID; in fact, the vast majority of conventional MI 

analyses assume that missing values are ignorable. But there are extensions of MI that relax 

the assumption of ignorability (Rubin 1987). Though these extensions are rarely used and not 

always effective (Rubin 2003), under MID they can hardly be used at all.2 

MID also relies on the assumption that the imputed Y values contain no useful information. 

This assumption is usually valid, but in some data sets the imputed Y values have been 

enriched by auxiliary information from an outside source. As we will show in section 7, 

hosever, the “signal” in such auxiliary information must be quite strong before it overcomes 

the “noise” from the random component in the imputed Y values.  

In short, although there are special circumstances when a conventional MI strategy is 

superior to MID, under most practical circumstances MID has at least a small advantage. 

In this paper, we describe applications of MID in social research (section 2); we explain why 

MID works (section 3); and we demonstrate the efficiency of MID estimates both 

analytically (section 4) and through simulations (section 5). In the final sections of the paper, 

we outline some extensions and limitations of MID (sections 6-7), and argue that the 

limitations are usually minor compared to the advantages. 

                                                 

2 Imputation techniques for nonignorable missingness can be used with MID, but only under the contrived 

assumption that the nonignorability is confined to cases where X is missing and Y is not. 
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2. EXAMPLES OF MID IN SOCIAL RESEARCH 

Two recent pieces of social research highlight the advantages of MID. In these examples, 

MID was especially helpful because many values were missing and it was difficult to specify 

a convincing imputation model for Y. 

Chamberlain et al. (2005) used MID in a model of sexual harassment Y at 204 firms. Nearly 

half of all Y values were missing, and imputation was tricky because Y was a categorical 

variable, with four possible values. Although there does exist software for imputing multi-

category variables (e.g., Raghunathan et al. 2002; Royston 2004), initially it was more 

convenient to use imputation software that assumed normality (the MI procedure in SAS 

version 9). In preparing the data, the researchers recoded the categorical Y variable as a set of 

dummy variables (0/1), and imputed each dummy as though it were normal. The normal 

imputation model filled in the dummy variables with nonsense—values other than 0 and 1—

but since the imputed Ys were then deleted, their unrealistic values had no effect on the 

analysis. Later, the analyses were repeated using categorical imputation software, and the 

results were not materially different. 

Downey et al. (2004) used MID in their longitudinal analysis of data from the Early 

Childhood Longitudinal Study, Kindergarten cohort, or ECLS-K (National Center for 

Education Statistics 2002). The ECLS-K is a cluster sample with approximately 20,000 

children clustered in 1,000 schools. Unfortunately, available imputation software offers no 
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convenient way to account for clustering,3 so Downey et al. (2004) used an imputation model 

that ignored the clusters. Again, though, since many of the imputed values were deleted 

before analysis, the misspecification of the imputation model had little effect on the results. 

3. WHY DOES MID WORK? 

MID works because, after imputation, cases with imputed Y contain no information about the 

regression of interest (cf. Little 1992). A conventional MI strategy tries to estimate the 

information in cases with imputed Y, but the attempt yields only estimation error. An MID 

strategy, by contrast, simply discards cases with imputed Y, recognizing that there is no 

information to be found in them. 

3.1 Why cases with imputed Y contain no information 

Cases with imputed Y quite literally contain no information about the regression of Y on X. In 

statistics, information is a synonym for the log of the likelihood (Kullback 1959),4 and the 

log-likelihood for cases with imputed Y is exactly zero.  

                                                 

3 Rubin (1996) suggests using an indicator variable for each cluster; however, most imputation software would 

treat the cluster indicators as fixed effects, which leads to estimation problems in the ECLS-K since the clusters 

are small with many missing values (Reiter and Raghunathan). Schafer and Yucel (2002) develop a method that 

accounts for clustering in a random-effects framework; however, their method is implemented in an outdated 

version of S-Plus, and assumes that only Y (not X) has missing values. 
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To see this, let (X,Y) = (xi, yi), i=1,…,n, be a data matrix representing n observations on a 

univariate outcome yi and a vector of inputs xi = (xi1, xi2, …), and suppose we wish to 

estimate the parameter vector θY|X, or more simply θ, that governs the conditional distribution 

of Y given X. In a regression model, for example, the parameter vector would be θ = (α 

β1 β2 ... σ2)T where α is the intercept, β1,β2,... are the slopes, and σ2 is the residual variance. 

If there were no missing values, then the likelihood of θ would be 

),|(),|( θθ XYfYXL =  (1), 

where f is the conditional distribution of Y given X and θ.  

When some values are missing, we need a little more notation. Following Rubin (1987), let 

Yobs and Ymis be the observed and missing values of Y, and let Xobs and Xmis be the observed 

and missing values of X. Then the likelihood of θ given the observed X and Y values can be 

obtained by integrating over all possible values of the missing data, 

mismisobsobsmismismismisobsobsobsobs dYdXYXYXpYXYXLYXL ),|,(),,,|(),|( ∫= θθ  (2). 

Here each possible value of the missing data (Xmis, Ymis) is weighted according to the 

posterior predictive distribution ),|,( obsobsmismis YXYXp  of the missing values given the 

observed values. The assumption that the posterior predictive distribution depends only on 

                                                                                                                                                       

4 Information also refers to a way of approximating the log likelihood by taking its second derivative near the 

maximum likelihood estimate.  
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the observed values is known as ignorability. (We will discuss ignorability further in section 

7.) 

To understand why the cases with missing Y contribute nothing to this likelihood, we break 

the data set into cases with Y missing and cases with Y observed. In the cases with Y missing, 

let Xobs|Ymis and Xmis|Ymis be the observed and missing values of X; likewise, in cases with Y 

observed, let the observed and missing X values be Xobs|Yobs and Xmis|Yobs. Then the total 

likelihood ),|( obsobs YXL θ  can be broken into two components: (1) the likelihood for cases 

with observed Y values and (2) the likelihood for cases where Y is missing: 

)|(),|(),|( || YmisobsYmisobsYobsobsYobsobsobs XLYXLYXL θθθ =  (3). 

Now the likelihood for cases with Y missing must equal one, since the likelihood in these 

cases is the conditional Y distribution integrated over all possible Y values: 

1),|()|( || == ∫ misYmisobsmisYmisobsYmis dYXYfXL θθ  (4). 

Since the log of one is zero, it follows that the log-likelihood of these cases is zero: 

0)|(log | =YmisobsYmis XL θ  (5). 

That is, the cases with missing Y contain no information about the regression parameters, as 

we claimed earlier. 

It follows that the overall likelihood is simply the likelihood for cases with Y observed: 

),|(),|( | obsYobsobsYobsobsobs YXLYXL θθ =  (6). 
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This does not mean that cases with missing Y are useless. As Little (1992, p. 1227) writes, 

“cases with Y missing can provide a minor amount of information for the regression of 

interest, by improving prediction of missing X’s for cases with Y present.” More precisely, 

the likelihood for cases with Y present is  

YobsmisYobsobsobsYobsmisYobsmisYobsobsobsobsobsYobs dXXYXpXXYfYXL ||||| ),|(),|(),|( ∫=θ  (7), 

and the cases with Y missing play a role in the posterior predictive distribution 

),|( || YobsobsobsYobsmis XYXp  of the X values that are missing from cases with Y observed. 

3.2 Estimating the likelihood under MI 

Multiple imputation can be justified as a way of estimating the likelihood by approximating 

the integral in (2) (Little and Rubin 2002). Instead of integrating across all possible missing 

values, we average across a few possible values. More specifically, we make M copies of the 

incomplete data set, and in the mth copy (m=1,2,…) we fill in the missing X and Y values with 

a set of imputations ( )(m
misX , )(m

misY ) drawn from an estimate of the posterior predictive 

distribution ),|,( obsobsmismis YXYXp . In the mth imputed data set, we estimate the likelihood 

),,,|(ˆ )()()(
obs

m
misobs

m
mis

m YYXXL θ  of θ given the imputed values: 

),,|,(),,,|(ˆ )()()()()( θθ obs
m

misobs
m

misobs
m

misobs
m

mis
m XXYYfYYXXL =  (8). 

Finally, we average the estimated likelihoods across the M imputed data sets:  
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∑
=

=
M

m
obs

m
misobs

m
mis

m
obsobsMIM YYXXL

M
YXL

1

)()()(
, ),,,|(ˆ1),|(ˆ θθ  (9). 

This is the MI estimate for the likelihood of θ. 

3.3 Estimating the likelihood under MID 

MID estimates the same likelihood, but it does so more efficiently. Since the overall 

likelihood is just the likelihood for cases with Y observed, 

),|(),|( | obsYobsobsYobsobsobs YXLYXL θθ =  (10), 

it follows that the likelihood can be estimated without using imputed Y values. In the mth 

imputed data set, the estimate of the likelihood using only the observed Y values is 

),,|(),,,|(ˆ )(
|

)()()( θθ obs
m

Yobsmisobsobs
m

misobs
m

mis
m

Yobs XXYfYYXXL =  (11). 

And averaging the estimated likelihoods across the M imputed data sets gives 

∑
=

=
M

m
obsobs

m
mis

m
YobsobsobsMIDM YXXLYXL

1

)()(
, ),,|(ˆ),|(ˆ θθ  (12), 

which is the MID estimate of the likelihood.  

It follows that the estimated likelihood will usually be more accurate under MID than under 

MI. MI has an extra source of estimation error, because MI must estimate the likelihood for 

cases with missing Y. MID, by contrast, avoids this estimation error by simply assuming, 

correctly, that the exactly likelihood for cases with missing Y is 1)|( | =YmisobsYmis XL θ . 
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4. ESTIMATION UNDER MID: MORE EFFICIENT POINT ESTIMATES, 

STANDARD ERRORS, AND CONFIDENCE INTERVALS 

Some analysts are skeptical of the claim that MID increases the precision of statistical 

estimates. How can a procedure increase precision by throwing cases out? Doesn’t deleting 

cases always increase the standard error? 

It is true that deleting imputed Ys will increases the standard error within each imputed data 

set. But in compensation, by reducing the influence of randomly imputed values, MID 

reduces the amount that estimates vary from one imputed data set to another. As it turns out, 

it is better have a small variance between imputed data sets than it is to have a small variance 

within imputed data sets. The variance within imputed data sets can be estimated more 

accurately than the variance between imputed data sets, because the number of imputed data 

sets is typically much smaller than the number of cases within each. 

Below we elaborate this argument by comparing the precision of point estimates, standard-

error estimates, and confidence intervals under MI and MID. Not only does the discussion 

clarify the advantages of MID, it also presents explicit formulas for MID estimates, and 

clarifies the fine points of MID estimation. 

4.1 Review of MI estimation 

Suppose we want to estimate θ, a scalar component of the parameter vector θ. For example, 

suppose that θ is the intercept or slope in a regression analysis. Under MI, θ is estimated as 
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follows (Rubin 1987). 

Analyze the mth imputed data set as though it were complete, and let )(ˆ m
MIθ  and )(ˆ m

MIW  be the 

completed-data estimates of the parameter and its standard error (Rubin 1987). In practice, 

these are usually maximum likelihood estimates, although for theoretical reasons it is helpful 

to think of them as the mean and standard deviation of the posterior density of θ. (See section 

4.3.1.) 

An MI point estimate MIM ,θ̂  is obtained by averaging the completed-data point estimates 

across the M imputed data sets: 

∑
=

=
M

m

m
MIMIM M 1

)(
,

ˆ1ˆ θθ  (13). 

And an MI standard-error estimate MIMT ,
ˆ  is obtained by adding the variances of the point 

estimate within and between the imputed data sets: 

MIMMIMMIM BWT ,,,
ˆˆˆ +=  (14), 

Here the within-imputation variance MIMW ,
ˆ  is the mean square of the completed-data 

standard errors across the M imputed data sets, 

∑
=

=
M

m

m
MIMIM W

M
W

1

)(
,

ˆ1ˆ  (15), 

and the between-imputation variance MIMB ,
ˆ  is the variance of the completed-data point 
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estimate )(ˆ m
MIθ  across the M imputed data sets (Rubin 1987):5  

∑
=

−
−

+
=

M

m
MIM

m
MIMIM M

MB
1

2
,

)(
, )ˆˆ(

1
/11ˆ θθ  (16). 

So MIMW ,
ˆ  and MIMB ,

ˆ  are the within and between variances, and their sum MIMT ,
ˆ  is the total 

variance.  

The ratio of between to total variance is an estimate of the fraction of missing information 

MIM ,γ̂ : 

MIM

MIM
MIM T

B

,

,
, ˆ

ˆ
ˆ =γ  (17). 

A confidence interval for θ is 

MIMMIM Tt
MIM ,ˆ,

ˆˆ
,νθ ±  (18), 

where 
MIM

t
,ν̂  is a fractile from the t distribution with MIM ,ν̂  degrees of freedom. The degrees 

of freedom MIM ,ν̂  is the harmonic total of two components (Barnard and Rubin 1999), 

                                                 

5 Rubin’s (1987) expression for MIMB ,
ˆ  omits the factor (1+1/M). To compensate, he includes this factor in his 

expression for the total variance, which he gives as MIMMIMMIM BMWT ,,,
ˆ)/11(ˆˆ ++= . 
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1

,,,
, ˆ

1
ˆ

1ˆ
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

MIobsMIMimp
MIM νν

ν  (19), 

where the first component MIMimp ,,ν  is the degrees of freedom in the imputations, 

2
,,, ˆ/)1(ˆ MIMMIMimp M γν −=  (20), 

and the second component is the degrees of freedom in the observed data, 

)ˆ1()ˆ1(
3
1

ˆ ,,,,
,

,
, MIMMIcomMIMMIcom

MIcom

MIcom
MIobs γνγν

ν
ν

ν −≈−
+
+

=  (21). 

Here MIcom,ν  is the degrees of freedom that would be observed if the data were complete. For 

example, in a bivariate linear regression with n cases, 2, −= nMIcomν .  

4.2 MID estimation 

MID estimation follow the same logic as ordinary MI estimation. MID simply uses fewer 

cases. 

To use an MID strategy, impute the data as usual, then delete all the cases with imputed Y. 

Now obtain estimates using the MI formulas above, reducing the degrees of freedom to 

reflect the apparent reduction in sample size. 

More formally, let )(ˆ m
MIDθ  and )(ˆ m

MIDW  be the point estimate and squared standard error obtained 

by analyzing the mth imputed-then-deleted data set as though it were a complete data set with 
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no missing values. Then MID estimates are obtained by substituting )(ˆ m
MIDθ  and )(ˆ m

MIDW  for )(ˆ m
MIθ  

and )(ˆ m
MIW  into the MI formulas given above. These substitutions yield an MID point estimate 

MIDM ,θ̂ , an MID standard-error estimate MIDMT ,
ˆ , an MID fraction-of-missing information 

estimate MIDM ,γ̂ , an MID degrees-of-freedom estimate MIDM ,ν̂ , and an MID confidence 

interval MIDMMIDM Tt
MIDM ,ˆ,

ˆˆ
,νθ ± .  

All of the substitutions are straightforward. The only detail to spell out is what value to use 

for the complete-data degrees of freedom, represented by MIcom,ν  under MI and by MIDcom,ν  

under MID. Under MI, MIcom,ν  is the degrees of freedom that would be observed if the entire 

data set were complete. Under MID, MIDcom,ν , is the degrees of freedom that would be 

observed if only the cases with observed Y values were complete. For example, suppose we 

are estimating a bivariate linear regression with n cases of which n1 have observed values for 

Y. Then under MI, MIcom,ν  would be n – 2, while under MID, MIDcom,ν  would be n1 – 2.  

Some readers may be misled into thinking that MI confidence intervals have more degrees of 

freedom than MID confidence intervals. This is not the case. Compared to MID, MI has more 

complete-data degrees of freedom comν , but MI also has a larger fraction of missing 

information γ (see equation (34) below). Since the observed degrees of freedom is 

approximately νobs = (1-γ) νcom, it follows that the observed degrees of freedom are typically 

smaller under MI than under MID.  
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4.3 Comparison 

Asymptotically—that is, with an infinite number of imputations—MI and MID give 

equivalent point estimates, standard errors, and confidence intervals. When the number of 

imputations is limited, however, MID estimates are more precise than MI estimates.  

Broadly speaking, the advantages of MID comes from the fact that MID estimates rely less 

on imputed values, and are therefore less affected by how much the imputed values vary 

from one data set to another. More precisely, MID reduces the between-imputation variance, 

which is the main source of uncertainty in MI estimates. To put the advantage of MID 

another way, MID reduces the fraction of missing information—the proportion of the total 

variance that lies between imputations—and the fraction of missing information determines 

the precision of point estimates, standard-error estimates, and confidence intervals. 

4.3.1 Asymptotic comparison 

We can better understand the difference between MI and MID if we spell out what quantities 

are being estimated. From a Bayesian perspective, imputation is a way to approximate a 

summary of the posterior density (Little and Rubin 2002). The posterior density is just the 

likelihood times the prior density p(θ) of θ: 

),|()(),|( obsobsobsobs YXLpYXp θθθ =  (22). 

If the prior is reasonably flat, then the posterior density is very similar to the likelihood. 

Given this posterior density, the posterior mean of θ is 
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),|( obsobs YXE θθ =  (23), 

and the posterior variance is 

),|( obsobs YXVT θ=  (24), 

so that the posterior standard deviation is T . 

If the prior is reasonably flat and the likelihood is symmetric and unimodal (as we usually 

assume), then the posterior mean and standard deviation are for practical purposes 

indistinguishable from the maximum likelihood estimate and its standard error. 

As the number of imputations M gets large, MI and MID point estimates become equivalent 

since, in a Bayesian sense, both MI and MID point estimates are consistent estimators of the 

posterior mean: 

),|(ˆ
,,, obsobsMIDMIMMIM YXE θθθθθ ===⎯⎯ →⎯ ∞∞∞→

 (25). 

Likewise, MI and MID standard-error estimates are asymptotically equivalent since both, 

when squared, are consistent estimators of the posterior variance: 

),|(ˆ
,,, obsobsMIDMIMMIM YXVTTTT θ===⎯⎯ →⎯ ∞∞∞→  (26). 

The components of the total variance, however, estimate different quantities under MID than 

they do under MI.  

Under MID, the within- and between-imputation variances estimate the expectation of the 
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posterior variance and the variance of the posterior expectation, conditionally on the 

observed Y values, the observed X values, and the missing X values: 

)],,|([ˆ
,, misobsobsXMIDMMIDM XYXVEWW

mis
θ=⎯⎯ →⎯ ∞∞→  (27) 

)],,|([ˆ
,, misobsobsXMIDMMIDM XYXEVBB

mis
θ=⎯⎯ →⎯ ∞∞→  (28). 

Under MI, the within and between components estimate similar quantities, but the posterior 

mean and variance are conditioned on the missing values of Y as well as X: 

)],,,|([ˆ
,,, mismisobsobsYXMIMMIM YXYXVEWW

mismis
θ=⎯⎯ →⎯ ∞∞→  (29) 

)],,,|([ˆ
,,, mismisobsobsYXMIMMIM YXYXEVBB

mismis
θ=⎯⎯ →⎯ ∞∞→  (30). 

Since conditioning on an extra variable can never increase the conditional variance 

(Wooldridge 2002), p. 31, it follows that  

),,|()],,,|( misobsobsmismisobsobs XYXVYXYXV θθ ≤  (31), 

so that the within-imputation variance is smaller under MI than under MID: 

MIDMI WW ,, ∞∞ ≤  (32). 

We foreshadowed this result earlier. The within-imputation variance is the mean square of 

the standard-error estimate from a single imputed data set. Deleting cases increases the 

standard error, so it makes sense that the within-imputation standard error would be smaller, 

on average, under MI than under MID. 
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Since the within-imputation variance is smaller under MI than under MID ( MIDMI WW ,, ∞∞ ≤ ), 

and since the total variance is the same under both methods ( MIDMI TT ,, ∞∞ = ), it follows that 

the between-imputation variance must be larger under MI than under MID: 

MIDMI BB ,, ∞∞ ≥  (33). 

Again, we foreshadowed this. The MI point estimate )(ˆ m
MIθ  uses more random imputed values 

and therefore varies more across imputed data sets than does the MID point estimate )(ˆ m
MIDθ . 

So the between-imputation variance is larger under MI than under MID. 

In sum, MI and MID estimates have the same asymptotic variance, but differ in how they 

split up the variance within and between imputed data sets. Under MID, more of the variance 

lies within the imputed data sets, and less lies between.  

Since the fraction of missing information is the ratio of between variance to total variance, it 

it follows that the fraction of missing information is asymptotically smaller under MID than 

under MI: 

MIMID ,, ∞∞ ≤ γγ  (34). 

This inequality stands to reason, because the fractions MI,∞γ  and MID,∞γ  represent different 

quantities. Under MI, the fraction of missing information MI,∞γ  compares the available 

information to the information that would be present if all the cases were complete. Under 

MID, by contrast, the fraction of missing information MID,∞γ  compares the available 
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information to the information that would be present if only the cases with observed Y were 

complete. Less information is missing by the latter standard than by the former, so the 

fraction of missing information is smaller under MID than under MI. 

4.3.2 Efficiency of MI estimates with limited imputations 

When the number of imputations is limited, imputation-based estimates are better if the 

fraction of missing information is small. Since the fraction of missing information is 

generally smaller under MID than under MI, it follows that MID estimates are more precise 

than MI estimates. 

To see the advantages of having a small fraction of missing information, consider first the 

efficiency of point estimates. Under MI, the standard error of a point estimate based on M 

imputations is about 

%100
2

, ×∞

M
MIγ

 (35) 

percent larger than it would be with infinite imputations.6 So with MI,∞γ  = 50% missing 

information, M = 5 imputations are required to bring the standard error within 5% of its 

minimum possible value. But with MI,∞γ  = 20% missing information, just M = 2 imputations 

will achieve the same goal. 

                                                 

6 Expression (35) comes from von Hippel (2005). It approximates a more-complicated formula from Rubin 

(1987). 
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A similar result holds for estimating standard errors. Under MI, the true standard error of the 

finite-M point estimate MIM ,θ̂  is )/1( ,, MT MIMI ∞∞ + γ  (Rubin 1987). But with a finite number 

of imputations M, this true standard error is unknown and has to be estimated by MIMT ,
ˆ . 

When the fraction of missing information is large, MIMT ,
ˆ  can be an unreliable estimate, in 

the sense that a noticeably different value of MIMT ,
ˆ  would be obtained if the data were re-

imputed. From one set of imputed data sets to another, the standard deviation of the squared 

standard-error estimate MIMT ,
ˆ  is about 

1
2

, −∞ MMIγ  (36) 

times the square of the true standard error. (See Appendix A.) For example, with 50% 

missing information and M = 5 imputations, it would not be uncommon for the squared 

standard-error estimate MIMT ,
ˆ  to stray as much as 26% from the true value of the squared 

standard error. In other words, it would not be uncommon for the estimated standard error to 

stray as much as 12% from the true standard error.7  

Again, MID can make the standard-error estimate more accurate by reducing the fraction of 

missing information. 

                                                 

7 1.12 is the square root of 1.26, so a 26% difference in the squared standard error corresponds to the 12% 

difference in the standard error. 
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MI confidence intervals can also be unreliable when the fraction of missing information is 

high (Royston 2004). Confidence intervals are affected not only by variation in the point 

estimate MIM ,θ̂  and in the standard-error estimate MIMT ,
ˆ ; they are also affected by variation 

in the degrees-of-freedom estimate MIM ,ν̂ . When the fraction of missing information is large, 

Royston (2004) suggests that as many as M = 20 imputations may be required to produce 

confidence intervals that are reliable in the sense that they would not change substantially if 

the data were imputed again. 

In addition to being unreliable, MI confidence intervals can have low coverage and excessive 

length when the fraction of missing information is large compared to the number of 

imputations. For example, with MI,∞γ =50% missing information and M = 2 imputations, a 

nominal 95% confidence interval will have just 92% coverage (Rubin and Schenker 1986). In 

addition, with MI,∞γ =50% missing information and M = 2 imputations, a confidence interval 

will have just MIM ,ν̂ =4 degrees of freedom, which makes it 42% longer than it would be if the 

number of imputations were large.8 If the number of imputations is increased to M = 5, the 

coverage would rise to 94.5%, but the interval would still be, on average, 8% longer than it 

would be if the number of imputations were infinite. 

                                                 

8 As the degrees of freedom grows larger, the t distribution approaches the normal distribution, whose 97.5th 

percentile is 42% smaller than the corresponding percentile of a t distribution with 4 degrees of freedom. 
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4.3.3 Efficiency of MID estimates 

Under MID, point estimates, standard errors, and confidence intervals depends on the MID 

fraction of missing information MID,∞γ  in the same way that MI estimates depend on the MI 

fraction of missing information MI,∞γ . Since the fraction of missing information is generally 

smaller under MID than under MI, MID estimates are generally more efficient than MI 

estimates. The advantages of MID may be expressed in either of the following ways: 

1. With the same number of imputations, estimates will generally be more accurate 

under MID than under MI. 

2. Or: to achieve a desired level of precision, fewer imputations are needed under MID 

than under MI.  

Reducing the number of required imputations can be a substantial benefit when each imputed 

data set requires considerable time and resources. For example, in Downey et al.’s (2004) 

complicated analysis of a large data set, it took about an hour to impute and analyze a single 

imputed data set. MID reduced the number of imputations needed from ten to three, which 

saved weeks of research time over the course of the study. 

5. HOW MUCH DOES MID HELP?  

A SIMULATION EXPERIMENT 

The analytic results in the previous section show that MID estimates are more efficient than 
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MI estimates, but they do not completely show whether the benefits of MID are large in 

practice. In this section, we make our findings more concrete through a simulation 

experiment that compares the properties of MI and MID estimates under a variety of 

circumstances. We then extend the experiment to explore the implications of deleting cases 

before rather than after imputation.  

5.1 Design 

In each simulated data set, we generated N observations on two input variables (X1, X2); these 

variables were bivariate standard normal with a correlation of ρ12. We then generated the 

outcome variable Y from the following regression model: 

Y = α + β1 X1 + β2 X2 + e,  

where e ~ Normal (0,σ 
e
2)  (37). 

We deleted values of X2 and Y in one of three ignorable patterns described below. After 

deletion, we created M copies of the incomplete data set, and we imputed missing values 

under a multivariate normal model. To impute missing values, we used the MI procedure in 

SAS 9.1. The procedure options were set so that the program used up to 1000 iterations of 

the EM method to find the posterior mode, then used Markov-chain Monte Carlo (MCMC) to 

generate the actual imputations. 

In carrying out the simulations, we independently varied six different factors: 

1. N, the number of observations in each data set, took values of 50 and 200. 
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2. ρ12, the correlation between X1 and X2, took values of .2, .5 and .8. 

3. R2, the proportion of variance explained in Y, also took values of .2, .5 and .8. (We 

manipulated R2 by leaving  (α, β1, β2) alone and setting  

σ 
e
2 = 2 (1 – R2) (1 + ρ12) / R2.) 

4. p, the proportion of X2 and Y values that we deleted, took values of .2 and .5. 

5. We deleted values in one of three ignorable patterns: 

a. Missing completely at random (MCAR).  

X2 was deleted with constant probability p. 

Y was independently deleted with the same probability. 

b. Coordinated missingness.  

X2 and Y tend to be missing from the same cases.  

Specifically, X2 was deleted with probability 2 p Φ(X1),  

and Y was independently deleted with the same probability 

Here Φ is the cumulative standard normal density. 

c. Complementary missingness.  

X2 and Y tend to be missing from different cases. 

X2 was deleted with probability 2 p Φ(X1), and  

Y was deleted with probability 2 p Φ(–X1). 

6. Finally, M, the number of imputations, took values of 2, 5, and 10. 
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The intercept and slopes of the regression model were fixed at (α, β1, β2)=(1,1,1). It was not 

necessary to vary the intercept and slopes since changing (α, β1, β2) to any nonzero value 

would be equivalent to changing σ 
e
2 and shifting or rescaling the axes. And the experiment 

already manipulated σ 
e
2 as a way of manipulating R2. 

For each of the 324 combination of the six experimental factors, we simulated D=1000 data 

sets. Then, using an ordinary MI strategy, we obtained point estimates and nominal 95% 

confidence intervals from the imputed data. Next we deleted cases with imputed Y values, 

and obtained MID estimates from the cases that remained.  

Note that we did not re-impute the data before using MID. Instead, to make the results as 

comparable as possible, we based our MI and MID estimates on the same imputed data sets. 

5.2 Results 

We compared MI to MID using the length and coverage of confidence intervals and the 

absolute estimation error of point estimates. Coverage was defined conventionally. The other 

comparisons were defined as follows: 

• Length of confidence intervals. For a given parameter θ and data set d, let MId ,λ  and 

MIDd ,λ  be the lengths of nominal 95% confidence intervals obtained by MI and MID. 

Then the percent difference in length is ( ) MIdMIDdMId ,,, /%100 λλλ −× . 

• Absolute error of point estimates. Likewise, let MId ,θ̂  and MIDd ,θ̂  be MI and MID 
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point estimates of the parameter θ in data set d. Letting the absolute errors of the 

estimates be |ˆ||| ,, θθε −= MIdMId  and |ˆ||| ,, θθε −= MIDdMIDd , the percent difference in 

absolute error is ( ) ||/||||%100 ,,, MIdMIdMIDd εεε −× . 

Note that these comparisons account for the pairing of MI and MID estimates that come from 

the same data set d. Note also that the percentage comparisons are inherently asymmetric; the 

minimum percent difference is –100%, but there is no maximum percent difference since the 

denominator of the comparison can be close to zero. Because of this asymmetry, we 

summarize the comparisons by using the median instead of the mean. 

Across all the simulated data sets, MID had a small advantage over MI. Nominal 95% 

confidence intervals had a coverage rate of 92.8% under MI and 93.8% under MID; that is, 

the coverage of MID confidence intervals was, on average, 1% higher and 1% closer to the 

nominal rate. The median difference in the length of confidence intervals was –2.75%, and 

the median difference in absolute estimation error was –2.4%. That is, in half of all data sets, 

the MID confidence interval was at least 2.75% shorter than the MI confidence interval, and 

the MID estimate was at least 2.4% closer to the true parameter value than was the MI 

estimate. 

Table 1 summarizes the experimental results. For concision’s sake, Table 1 collapses the 

results across experimental factors that had little effect on the comparison between MI and 

MID. As it turns out, only two factors made a material difference; these factors were the 

proportion of missing values, and the number of imputations. Table 1 gives results for all 

four regression parameters (α, β1, β2, σ 2); in addition, Figure 1 summarizes the results for 
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the first slope β1. 

TABLE 1 NEAR HERE  

FIGURE 1 NEAR HERE  

The advantages of MID were greatest when there were few imputations and a lot of missing 

values; in addition, MID seemed to have a greater advantage for estimating the intercept α 

than for estimating the other regression parameters. When estimating the intercept under the 

most difficult experimental settings (M=2, p=.5), MID confidence intervals had 5% better 

coverage and were, at the median, 26% shorter than MI confidence intervals; in addition, 

MID point estimates were, at the median, 9% closer to the parameter value than were MI 

point estimates. In percentage terms, MID did more to shorten confidence intervals than it 

did to increase coverage or to improve point estimates. This may be because the length of 

confidence intervals has three sources of imputation error: error in the point estimate, error in 

the standard error estimate, and error in estimating the t statistic’s degrees of freedom. All 

three errors are reduced by MID. 

When there were more imputations or fewer missing values, the differences between MI and 

MID were relatively modest. But under all experimental settings, MID was at least as good 

as MI. Although there was one setting (M=2, p=.2) where MI produced 1–2% shorter 

confidence intervals than MID, under that setting MI’s advantage in length came at the cost 

of a 1% disadvantage in coverage. 

5.3 Deletion before imputation? 
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In the introduction, we said that deletion should come after imputation, because cases with 

missing Y may be useful for imputing X in other cases. But how useful, in practice, are cases 

with missing Y? Little (1992, p. 1227), suggested that cases with missing Y contain just a 

“minor amount of information for the regression of interest.” Does it really matter whether 

we delete cases before or after imputation?  

To find out, we tested a strategy of deletion, then multiple imputation (DMI), under which we 

deleted cases with missing Y, then used the remaining cases for imputation and analysis. We 

included this method in the six-factor experiment described above. 

Under most experimental conditions, DMI and MID produced very similar results. Across all 

the simulated data sets, DMI point estimates were, at the median, just 0.7% further from the 

true parameter values than were MID point estimates. Similarly, DMI confidence intervals 

had just 0.1% lower coverage and were, at the median, just 0.4% longer than MID 

confidence intervals, 

Under selected conditions, however, DMI had more of a disadvantage. Specifically when 

there were 50% missing values, and the pattern of missingness was complementary—that is, 

values of X2 were missing from different cases than values of Y—DMI became a seriously 

flawed strategy. Under these circumstances, deleting cases with Y missing meant deleting 

most of the cases with X2 observed. With few observed X2 values, it became very difficult to 

impute X2 precisely, so that on occasion (about once in a thousand data sets), it was 

impossible to impute values at all. When values could be obtained, the DMI point estimates 

were a median of 4–5% further from the true parameter values than were the MID point 
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estimates. Likewise DMI confidence intervals were a median of 3–4% longer than MID 

confidence intervals, with 0.1–0.7% lower coverage. These differences were about the same 

whether the number of imputations was M=2, 5, or 10.  

In short, under most circumstances, DMI is nearly as good as MID, but the advantages of 

MID can be substantial when the cases missing X overlap little with the cases that are 

missing Y. 

6. EXTENSIONS 

For simplicity’s sake, we have focused on estimating individual parameters for the 

conditional distribution of a single Y variable. The results, however, can easily be extended to 

the situation where Y is multivariate or when inference concerns multiple parameters. 

6.1 Extension to multiple parameters 

Researchers sometimes wish to carry out multi-parameter hypothesis tests—for example, a 

test of the null hypothesis H0: (α, β1, β2)=(0,0,0). Three methods have been proposed for 

multi-parameter inference with multiply-imputed data. One method (Li et al. 1991) is a 

generalization of the single-parameter inference in section 4, which is justified in terms of the 

posterior density. The other methods are based on likelihood theory (Li et al. 1991; Meng 

and Rubin 1992).  

Since MID estimates the same likelihood and posterior as MI (see section 3), we would 
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expect that the established multi-parameter tests could be used under MID with little or no 

modification and some advantage in efficiency.  

6.2 Extension to multivariate Y: for example, repeated measures 

The discussion so far has focused on the situation where Y is univariate, but it is not hard to 

see the implications when the dependent variable is a multivariate vector Y = (Y1, Y2, …). 

Under MID, the basic prescription is to delete imputed elements of Y before analysis, unless 

this would require deleting observed elements of Y as well.  

An important application occurs when Y contains repeated measures. For example, in the 

Early Childhood Longitudinal Study, Kindergarten cohort, the vector yi = (yi1, yi2, yi3, yi4) 

represents student i’s scores on four reading tests, taken near the beginning and end of 

kindergarten and first grade. By design, 70% of children are missing the third test score yi3, 

and many children are missing other test scores as well. 

In the imputation step, missing parts of the yi vector can be filled in along with missing 

values of other variables xi. With respect to imputed yi values, this means that there are three 

types of student: 

(1) For some students, the entire yi vector is observed. 

(2) For some students, the entire yi vector is imputed. 

(3) For the remaining students, only part of the yi vector—e.g., yi3—is imputed and the 

remaining parts, e.g., (yi1, yi2, yi4)—are observed.  
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Under MID, it is clear that students in the first group would be retained after imputation, 

while students in the second group would be deleted. The treatment of the third group, 

however, depends on the analysis method that used by the researcher.  

(1) Some older methods—e.g., repeated-measures MANOVA (Potthoff and Roy 1964)—

require “balanced” data with values for every component of the yi vector. If such 

methods are used, then it may be advisable to use partly imputed values for yi. For 

example, the analysis could use an imputed value for yi3 along with the observed 

values of (yi2, yi2, yi4). Using imputed yi3 values involves a tradeoff, however, since 

with a finite number of imputations, variation in the imputed yi3 value may offset the 

efficiency gained by using the observed values of (yi1, yi2, yi4). 

(2) Newer methods—e.g., multilevel growth models (Raudenbush 2001)—can handle 

“unbalanced” data where some students are missing parts of yi. If such methods are 

used, then there is no need to include imputed elements of yi in the analysis. For 

example, in a case with yi3 missing, an MID analysis would use the observed values 

of (yi1, yi2, yi4) but would not require an imputed value for yi3. 

Downey et al. (2004) used the second approach to estimate learning rates in the Early 

Childhood Longitudinal Study, Kindergarten cohort.  

7. CAN MID BE WORSE THAN A CONVENTIONAL MI STRATEGY? 

The justification for MID depends on the claim that imputed Y values contain no information 
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about the regression of interest. Although this claim is often correct, there are situations 

where the imputed Y values do contain some extra information. In these situations, a 

conventional MI strategy can potentially be superior to MID. The extra information in the 

imputed values must be substantial, however, or the benefits of the extra information will be 

swamped by random variation in the imputed values. 

7.1 Auxiliary variables 

One situation where imputed Y values can contain extra information is when auxiliary 

variables have been used in imputation. An auxiliary variable is one that, though not part of 

the intended analysis, can improve imputation by providing extra information about the 

incomplete variables. For example, the intended analysis may be a regression of Y on X1 and 

X2, but the imputation step also uses an auxiliary variable Z to improve imputation of Y. 

Note that auxiliary variables are irrelevant to the MI-MID comparison unless the auxiliary 

variables improve the imputation of Y. If only the imputed X values benefit from auxiliary 

information, then MI and MID estimates will benefit equally, and MID will continue to have 

an advantage over MI. It is only when the imputed Y values benefit from auxiliary 

information that MI can outperform MID. 

When auxiliary variables improve imputation of Y, we might expect MI to be more efficient 

MID—and, asymptotically, it will be. With an infinite number of imputations, MI with 

auxiliary variables will produce “superefficient” estimates whose asymptotic standard errors 

are smaller than the asymptotic standard errors MIT ,∞  obtained from a conventional MI 
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analysis (Meng 1995; Rubin 1996). Since MID’s asymptotic standard errors MIDT ,∞  are 

equal to those obtained from a conventional MI strategy—i.e., since MIDMI TT ,, ∞∞ = —we 

would expect that, with an infinite number of imputations, MI with auxiliary variables will 

have a smaller standard error than MID. 

But in practice, we cannot use an infinite number of imputations—and with a limited number 

of imputations, even auxiliary variables may not eliminate MID’s advantage over MI. With a 

limited number of imputations M, MI’s smaller infinite-M variation can be overwhelmed by 

the random variation that comes from using a finite number of imputed values for Y. 

To compare the finite-M properties of MI and MID in the presence of auxiliary variables, we 

extended our simulation experiment. In the modified experiment, we included an auxiliary 

variable Z which had a correlation ρYZ with Y but no further relationship with X. Specifically, 

we generated Z = ρYZ Ys + u, where Ys is a standardized version of Y, and u ~ N (0, 1 – ρYZ
2) is 

a normal disturbance that is independent of X1, X2, and Y. The correlation ρYZ took values of 

{.1, .3, .5, .7, .9} and was varied independently of the other six factors in the simulation 

experiment. As in the original experiment, we simulated D=1000 data sets for each 

combination of factors, then compared MI and MID with respect to the length and coverage 

of confidence intervals and the absolute error of point estimates.  

FIGURE 2 NEAR HERE  

Figure 2 summarizes the results for the slope β1; results for other parameters were similar. 

The results are plotted as a function of the correlation ρYZ, the fraction of missing information 



 MID—38

p, and the number of imputations M. As before, we collapsed the results across the other four 

experimental factors, which had comparatively small effects. 

When an auxiliary variable Z was used, the differences between MI and MID depended on 

the circumstances.  

• In some circumstances, the advantages of MID were substantial. Under the extremest 

settings—with 50% missing values, just a ρYZ=.1 correlation between Y and Z, and 

only 2 imputations—the MID confidence intervals had 4.6% better coverage (92.6% 

vs. 88.0%) and were a median of 7.1% shorter than MI confidence intervals. In 

addition, MID point estimates were a median of 22% closer to the parameter values 

than were MI point estimates. 

• But at the opposite extreme—with 50% missing values, 10 imputations, and a ρYZ=.9 

correlation between Y and Z—the advantage tipped heavily toward MI. Under these 

circumstances, MI point estimates were a median of 22% closer to the parameter 

value than MID point estimates. Similarly, MI confidence intervals were a median of 

12.5% shorter than MID confidence intervals. Although coverage was slightly lower 

under MI than under MID (95.8% vs. 94.3%), both methods were about equally close 

to the nominal coverage rate of 95%. 

With 20% missing values, the patterns were similar, but the differences between MI and MID 

were much smaller. 

In sum, the auxiliary information has to be quite good before it trumps the extra variation 
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introduced by using a finite number of randomly imputed Y values. In the experiment, the 

tipping point where MI became more efficient than MID was around ρYZ=.5 with M=10 

imputations, around ρYZ=.6 with M=5 imputations, and around ρYZ=.7 with M=2 

imputations.9 In addition, the simulation may favor the auxiliary-variable approach in the 

sense that the simulated auxiliary variable Z has no missing values. In a real data set, the 

same cases that were missing Y would often be missing Z as well—so that, even if the 

correlation ρYZ was large, Z could do little to improve imputation of Y. As a practical matter, 

then, MI with auxiliary variables may be a poorer strategy than Figure 2 suggests. 

7.2 Nonignorable missingness 

Another situation where the imputed Y values contain extra information is when Y has been 

imputed under a nonignorable model. In previous sections, we assumed that the mechanism 

which causes Y to be missing is ignorable in the sense that, in cases where Y is missing, the 

unobserved value of Y is similar to the observed Y values in other cases with similar values 

for X (Little and Rubin 2002). But this assumption is not always credible. For example, if Y is 

body weight, we might suspect that nonrespondents have higher Y values than do respondents 

with comparable values for X variables such as gender, height, and age. 

A simple way to adjust imputations for nonignorability is to impute Y under an ignorable 

model, and then adjust the imputed values to compensate for the presumed nonresponse bias 

                                                 

9 With M=2 imputations, however, the coverage of MI confidence intervals was almost 5% below the nominal 

rate, so that the MID confidence intervals may be preferable even though they are longer.  
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(Rubin 1987). For example, if Y is self-reported body weight, we might adjust the imputed Y 

values upward by, say, 10 pounds. Then the imputed Y values contain information that is not 

available from other cases, and this information would be lost if cases with imputed Y were 

deleted before analysis. MID is inappropriate in this situation. Similarly, MID is 

inappropriate if imputed X values have been adjusted in cases that also have imputed Ys. 

Again, however, the extra information in the imputed Y values must be quite good before it 

can improve the estimates. In many practical settings, the form of nonignorable missingness 

is not understood well enough to be useful for improving the imputations. When using MI, 

few analysts adjust imputations for nonignorability, and when adjustments are made, the 

adjustments can make estimates worse instead of better (Rubin 2003).  

In short, although MID lacks the tools to adjust for certain types of nonignorability, those 

tools can be dull, and in practice they are usually left in the shed. 

7.3 MID is limited to estimating conditional distributions 

Finally, we should emphasize that that MID is only valid for estimating the parameters θY|X 

that govern the conditional distribution of Y given X. MID will not necessarily produce good 

estimates for the parameters θX that govern the distribution of the X variables, or for the 

parameters θY that govern the marginal distribution of Y. For example, if we are estimating 

the regression of Y on X, MID will produce consistent estimates for the intercept α, slopes β, 

and residual variance σ 
e
2—but MID may not produce a good estimate of R2. This is because, 

while α, β, and σ 
e
2 describe the conditional distribution of Y, calculating R2 also requires 
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information about the marginal distribution of X or Y. For example, one R2 formula— 

R2 = 1 – σ 
e
2/σ 

Y
2—requires the marginal variance σ 

Y
2 of Y. A valid estimate for R2 can be 

obtained by combining an MI estimate of σ 
Y

2 with an MID estimate of σ 
e
2, or (less 

accurately but more simply) by applying an ordinary MI strategy. 

8. CONCLUSION 

We have proposed a modified strategy for obtaining regression estimates when both X and Y 

are missing values at random. The strategy is called multiple imputation, then deletion 

(MID), and consists of imputing the data as usual, but then deleting cases with imputed Y 

values before analysis.  

When there is something wrong with the imputed Y values, MID offers protection from the 

consequences of using the problematic values in analysis. And when the imputed Y values 

are acceptable, MID still typically offers somewhat greater efficiency than an ordinary MI 

strategy.  

The justification for MID is that, under typical circumstances, imputed Y values contain no 

information about the regression of interest, so that imputed Y values add nothing but noise to 

the estimates. There are special circumstances where the imputed Y values do contain some 

extra information, but that information must be quite substantial before it compensates for the 

noise that results from using imputed Y values in analysis. 

MID is especially attractive when there are a lot of missing Y values and it is difficult to 
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specify a convincing imputation model for Y. Since MID is a simple variant of MI, MID is 

not hard to implement, as illustrated by the short SAS macro in Appendix B. 
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APPENDIX A:  

RELIABILITY OF THE STANDARD-ERROR ESTIMATE 

Expression (36) gives the reliability of the squared standard-error estimate MIMT ,
ˆ  under 

MI. The derivation of that expression is given here.  

Over all sets of M imputations, the expectation and variance of MIMT ,
ˆ  are 

MIMIMIM TMTE ,,, )/1()ˆ( ∞∞+= γ  (38) 

and 

)1/(2)ˆ(

)ˆ()ˆ()ˆ(
2
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MIMIM

MIMMIMMIM  (39) 

(Rubin 1987). The term )ˆ( ,MIMWV  can be neglected since )ˆ()ˆ( ,, MIMMIM BVWV <<  if n is 

large.10 

From (38) and (39), we can derive an expression for MIMT ,
ˆ ’s coefficient of variation, 

                                                 

10 Again, Rubin’s (1987) expression for MIMB ,
ˆ  omits the correction factor (1+1/M). To compensate, he 

includes this correction in his expression for the variance of MIMT ,
ˆ : 

)1/()/11(2)ˆ( 2
,

2
, −+= ∞ MBMTV MIMIM . 
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which equals expression (36). 
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APPENDIX B:  

SAS MACRO IMPLEMENTATION 

Because MID is a very simple extension of MI, implementing MID is straightforward 

provided there already exists an implementation of MI. SAS, for example, has 

implemented the MI procedure for multiple imputation under an assumption of 

conditional normality.11 The following SAS macro implements MID by  

1. creating a binary variable (y_missing) that indicates which cases are missing Y; 

2. calling the MI procedure for multiple imputation; 

3. and deleting from the imputed data all cases where y_missing indicates that Y was 

missing before imputation. 

The macro arguments are the name of the incomplete_data set, the desired name for the 

imputed_data set, the number of desired imputations (nimpute, default 5), the outcome 

variable (y), and the list of input variables (xs). 

Example of usage 

%mid (incomplete_data=your_incomplete_data, 
imputed_data=your_imputed_data,  
y=income, xs=education age,  
nimpute=10); 

                                                 

11 The MI procedure can also impute binary variables if the pattern of missing values is monotone. 
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Macro code 

%macro mid (incomplete_data=, imputed_data=, y=, xs=, nimpute=5); 
 DATA &incomplete_data; 
  SET &incomplete_data; 
  if (&y=.) then y_missing=1; else y_missing=0; 
 RUN; 
 PROC MI DATA=&incomplete_data OUT=&imputed_data NIMPUTE=&nimpute; 
  VAR &xs &y; 
 RUN; 
 DATA &imputed_data 
  SET &imputed_data; 
  if y_missing then delete; 
 RUN; 
%mend mid; 
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TABLES 

Table 1. Differences between MI and MID estimates  

Coverage of nominal 95% 
confidence intervals 

Median difference in… Percent 
missing 

Number of 
imputations 

Parameter 

MI MID Difference …length of 
confidence 

interval 

…absolute 
error of 
point 

estimate 
50% 2 Intercept α 89% 94% 5% –26% –9% 

  Slope β1 89% 93% 4% –25% –7% 
  Slope β2 88% 91% 3% –18% –4% 
  Residual variance σ2 87% 90% 3% –11% –6% 
 5 Intercept α 94.2% 94.7% 0.5% –13% –3% 
  Slope β1 94.1% 94.5% 0.4% –12% –3% 
  Slope β2 93.1% 93.4% 0.3% –9% –2% 
  Residual variance σ2 89.8% 90.7% 0.9% –6% –3% 
 10 Intercept α 94.8% 94.8% 0.0% –7% –2% 
  Slope β1 94.7% 94.8% 0.1% –6% –2% 
  Slope β2 93.8% 93.9% 0.2% –4% –1% 
  Residual variance σ2 90.5% 91.0% 0.4% –3% –2% 

20% 2 Intercept α 94.0% 94.9% 0.9% +1% –4% 
  Slope β1 93.9% 94.9% 1.0% +1% –4% 
  Slope β2 93.4% 94.4% 1.0% +1% –4% 
  Residual variance σ2 92.6% 93.4% 0.9% +2% –4% 
 5 Intercept α 95.0% 95.0% 0.0% –2% –2% 
  Slope β1 94.9% 95.0% 0.0% –1% –2% 
  Slope β2 94.7% 95.0% 0.3% –2% –2% 
  Residual variance σ2 93.2% 93.4% 0.2% –1% –2% 
 10 Intercept α 95.0% 95.0% 0.0% –1% –1% 
  Slope β1 94.9% 95.0% 0.1% –1% –1% 
  Slope β2 94.9% 94.8% –0.1% –1% –1% 
  Residual variance σ2 93.5% 93.6% 0.1% 0% –1% 

Caption. Compared to MI estimates, MID point estimates tend to be closer to the 

parameter values, and MID confidence intervals tend to be shorter with equal or higher 

coverage. The advantages of MID are larger when there are few imputations or a lot of 

missing values.  
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FIGURES 
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Figure 1. Compared to an ordinary MI strategy, MID typically produces smaller errors in 
point estimates, as well as shorter confidence intervals with higher coverage rates. These 
plots focus on estimation of the slope β1; estimates for other parameters follow a similar 
pattern. 
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Figure 2. Differences between MID and MI when the imputations use an auxiliary 

variable Z that is correlated with Y. Unless the correlation is strong and the auxiliary 

variable is complete in cases where the Y variable is missing, the improved MI estimates 

are no better than the MID estimates. These plots focus on estimation of the slope β1; 

estimates for other parameters follow a similar pattern. 

 


