How Rarels Symmetry in Musical 12-Tone Rows?
David J. Hunter; Paul T. von Hippel

The American Mathematical Monthly, Vol. 110, No. 2. (Feb., 2003), pp. 124-132.

Stable URL:
http:/links.jstor.org/sici ?sici=0002-9890%28200302%629110%3A 2%3C124%3AHRI SIM %3E2.0.CO%3B2-8

The American Mathematical Monthly is currently published by Mathematical Association of America

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals'maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archiveisatrusted digita repository providing for long-term preservation and access to |eading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It isan initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Tue Sep 18 22:11:37 2007


http://links.jstor.org/sici?sici=0002-9890%28200302%29110%3A2%3C124%3AHRISIM%3E2.0.CO%3B2-8
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html

How Rare Is Symmetry
in Musical 12-Tone Rows?

David J. Hunter and Paul T. von Hippel

1. 12-TONE ROWS: MUSICAL AND GEOMETRIC SYMMETRY. Between
1914 and 1928, the Viennese composer Arnold Schoenberg developed a method for
“12-tone” musical composition [14], [13], [6]. In a 12-tone composition, all harmonies
and melodies are based on a 12-tone row. A row is an ordering of the set of twelve
pitch chromas,! {C, C#, D, D4, E, F, Ft, G, Gf, A, Af}, B}, often represented by the
set {0, 1, ..., 11}. The 12-tuple (9, 10,0, 3,4,6,5,7, 8,11, 1, 2), for example, rep-
resents the 12-tone row for movement 5 of Schoenberg’s Serenade, opus 24. Figure 1
displays this row in musical notation and as a clock diagram [9], [1]—a succession of
arrows connecting the numbered vertices of a regular dodecagon.

8 11 1 2

Figure 1. Clock diagram and musical notation for the row from Schoenberg’s Serenade, opus 24, movement 5.

A 12-tone composition typically employs a row both in its prime form p =
(po, P1, ..., p11) and in several transformations. Four methods for transforming a
row will be discussed here: transposition, retrograde, inversion, and cyclic shift.
Transposition, retrograde, and inversion are used throughout the Viennese 12-tone
repertoire, whereas cyclic shift is confined to music by Schoenberg’s student Alban
Berg [8], and a few early pieces by Schoenberg himself [7]. Because cyclic shift is a
rarer transformation, and because it complicates certain calculations, we prefer to treat
it as a separate case.

Defining the transformations is straightforward. Transposition T, rotates the dia-
gram clockwise by 30k degrees (Figure 2, upper left). Musically, this corresponds to

LA pitch chroma, or pitch class, is the letter name of a pitch, without regard to the octave or height at which
the pitch occurs. A low Ctf played on the cello and a high Cf played on the piccolo share the same chroma,
called Ct, Db, or 1. In both music and psychology, chromas are represented in a circular format [15], [9]; this
justifies our use of clock diagrams.
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Figure 2. The row p from Figure 1 (center) transformed by transposition, inversion, retrograde, and cyclic
shift (clockwise from upper left).

playing the row k semitones higher. On 12-tuples, T is given by the following map:

T;
(po, P15 -+ P11) R (po+k,pr+k,...,p11+%k) mod 12.
Inversion I reflects the clock diagram across the diameter containing the first note po

(Figure 2, upper right). Musically, this corresponds to playing the row upside-down.
On 12-tuples, it becomes

I
(po, p1s -, p11) —> (Po,2po — p1» ... ,2po — pn1) mod 12.

Retrograde R reverses the arrows of the clock diagram (Figure 2, lower right), playing
the row backwards:

R
(po» 1, ---» p11) —> (p11, Pios -+ - » Po)-

Cyclic shift C;, moves the last k notes from the end of the row to the beginning:

c
(P0s Py -+ » P11) —> (Posks Pidks - -+ » PI14A)»
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in which the subscripts are taken modulo 12. On a clock diagram, cyclic shift deletes
k arrows from the end of the sequence and adds k arrows to the beginning (Figure 2,
lower left).2

Although Figure 2 depicts these transformations individually, they are also used
in combination. Rows that are transformations of one another are called equivalent
and are said to be part of the same row class. Under transposition, retrograde, and
inversion, the row class may contain up to 48 different rows (2 - 2 - 12). If cyclic shift
is allowed as well, the size of the row class may grow to 576 (48 - 12).

Like rows, row classes can be represented geometrically. By removing the arrow-
heads and numbers from a clock diagram, we can represent a row class under trans-
position, retrograde, and inversion. The absence of arrowheads allows for equivalence
under retrograde (reversal of arrows), and the absence of numbers allows for equiva-
lence under transposition (rotation with respect to numbered vertices). To account for
equivalence under inversion, we must also regard two diagrams as equivalent if one is
a mirror image of the other. For the row in Figure 1, the row class appears in Figure 3.

Figure 3. Row class for the row in Figure 1.

If we also allow cyclic shift, we can represent a row class by adding a final line
segment to the diagram, forming a closed polygon with twelve vertices.> Because a
polygon has no starting point, it cannot be altered by cyclic shift (change of starting
point). Allowing for cyclic shift as well as the other three transformations, the row
class for Berg’s Violin Concerto is shown in Figure 4.

Composers sometimes choose a row that is symmetric. A symmetric row is one that
is invariant under some transformation; geometrically, its row class has a symmetric
diagram. The simplest type of symmetry occurs in the row for the Chamber Sym-
phony by Schoenberg’s student Anton Webern (Figure 5), which is its own transposed
retrograde, i.e., p = Tg(R(p)). Such rows are called palindromes because, up to trans-
position, they are the same forward and backward. A palindrome’s row-class diagram
has rotational symmetry; the diagram for Webern’s Chamber Symphony, for example,
looks identical if rotated 180 degrees.

A more complicated type of symmetry occurs in the row from movement 5 of
Schoenberg’s Serenade, opus 24 (Figure 1); this row is its own transposed retrograde
inversion, i.e., p = Ts(R(I(p))). Rows like this, which are symmetric under three
transformations (7', R, and I), have row-class diagrams with mirror symmetry. The

2We have borrowed the term cyclic shift from computer science. Music theorists often call it rotation,
because it involves rotating the elements of the ordered list (po, p1, ... , p11). But this use of the word rotation
can be confusing when clock diagrams are present. Rotating a clock diagram does not correspond to cyclic
shift; instead, it corresponds to transposition.

3We allow nonsimple polygons, i.e., nonadjacent sides may intersect.
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Figure 4. Polygon and musical notation for the row from Berg’s Violin Concerto.
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Figure 5. Palindromic row from Webern’s Chamber Symphony, opus 21.

diagram for Schoenberg’s Serenade, for example, looks like a brandy snifter, with mir-
ror symmetry about the stem (Figure 3).

The most complicated type of symmetry occurs in the row from Berg’s Violin Con-
certo (Figure 4). This row is symmetric under four transformations; namely, it is a
transposed cyclic shift of its retrograde inversion, i.e., p = T4(C3(R(I(p)))). Again,
the symmetry is evident from the row-class diagram, which has mirror symmetry
around the horizontal. Note that this row is not symmetric without cyclic shift; in
fact, removing any line from the diagram destroys the mirror symmetry.

Symmetric rows offer attractive musical possibilities. In the second movement of
his Chamber Symphony, Webern combines a palindromic row (Figure 5) with palin-
dromic rhythms and dynamics—creating a palindromic theme. In addition, symmetric
rows can be broken into shorter segments that are similar in content. (Some nonsym-
metric rows, called derived rows, share this property.) In Figure 1, for example, the
musical notation shows how the row breaks into two six-note halves, each of which is
a transposed retrograde inversion of the other. (Further inspection reveals that each six-
note segment can be broken into two three-note halves, each of which is a transposed
retrograde of the other. Thus, in addition to its ordinary symmetry, this row displays a
kind of nested symmetry—a fine point that we will not dwell on here.)

It is widely believed that the Viennese 12-tone composers, especially Webern, had a
penchant for symmetric rows [13], [8], [3]. Yet the number of symmetric rows used by
these composers is not overwhelming. Under transposition, retrograde, and inversion,
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just four of the twenty-one row classes used by Webern, and two of the forty-two used
by Schoenberg, are symmetric. In discussing the works of Berg, we should also include
cyclic shift, since he used this transformation extensively [10]. But even so, only two
of Berg’s twenty-three rows qualify as symmetric.

Is the number of symmetric rows in Viennese 12-tone music large enough to evi-
dence a taste for symmetry? As we intend to show, the answer is yes. Although sym-
metric rows are fairly rare in Viennese 12-tone music, they are rarer—much rarer—in
the universe of all row classes.

We demonstrate the rareness of symmetric rows using the theory of permutation
groups, a topic in elementary abstract algebra. The theory and calculations involved
should be quite accessible to advanced undergraduates. In addition to traditional tech-
niques, some calculations require the use of the symbolic algebra programming lan-
guage GAP [4].

As well as demonstrating the rareness of symmetry, our methods provide a recipe
for generating symmetric rows. This recipe may be useful to today’s 12-tone com-
posers.

2. AN ENUMERATION OF SYMMETRIC ROW CLASSES. While the ge-
ometric representation of rows helps clarify some issues involving symmetry, a
precise enumeration of symmetric rows requires an algebraic representation. Alge-
braically, we can represent a 12-tone row as an element of S;,, the symmetric group on
{0, 1,..., 11}. For example, the tone row from Schoenberg’s Serenade is represented
by the permutation (0 9 11 2)(1 10)(5 6) in Si,. In this representation, we can model
the four types of transformations as multiplication by certain elements of S;,.* Let
t=(012 --. 11). For any tone row « in Sy, its transposition by one semitone is
at and its cyclic shift by one serial position is To.

Now let p = (0 11)(1 10)(2 9)(3 8)(4 7)(5 6). For any « in S5, pa gives the ret-
rograde of «. Finally, let o = pt. The inversion of « is at’o t ™, where i is chosen so
that at’ fixes 0. In summary, the four transformations on « in S}, are as follows:

Tk k ! i R Ck, _k
ar— att, ar—atcr’, ar— pa, oF— T

Let D = (z, p) (or, equivalently, D = (t, ¢)) and F = (p). Note that D is the di-
hedral group of order 24. For any tone row « in Si,, the set of all tone rows that can
be obtained by applying a combination of retrograde, inversion, and transposition to
o (i.e., the row class of «) is the double coset Fa D. If we also allow cyclic shift, the
equivalence class becomes Do D. We can detect a symmetric row by computing the
size of these double cosets. For a row o with no symmetry, every nontrivial transfor-
mation yields a new row, so |FaD| = 48 and |DaD| = 576. However, if o exhibits
symmetry under retrograde, inversion, and transposition, then |FaD| < 48, and if a
nontrivial composite of (some of) all four transformations fixes «, then |[DaD| < 576.

Denote the set of classes of tone rows equivalent under transposition, retrograde,
and inversion (i.e., the set of row classes) by

T = {FaD |« € S3)

and the set of equivalence classes under all four transformations (including cyclic
shift) by

R ={DaD | o € S;»}.

4We multiply permutations left-to-right, so « means do « first, then do .
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We now investigate the structure of 7" and R. The number of row classes is provided
by two propositions:

Proposition 1. |7 | = 9,985,920.
Proposition 2. |R| = 836,017.

Proposition 2 was proved in [S] as the number of equivalence classes of paths
traversing the vertices of a regular dodecagon. For an alternate derivation, see [11].
Proposition 1 appears in [12]. Whereas these sources give formulas for all n, we re-
strict our attention to the case n = 12. Generalization to all n is straightforward.

The proof of Proposition 1 in [12] is a nice application of Burnside’s lemma, but
our model provides a simpler derivation, using only standard facts from undergraduate
algebra.

Proof of Proposition 1. For any « in Sy, FaD = a D U paD. EitheraD N paD = 0
or aD = pa D; we shall count the number of « for which the latter occurs. Any such
a has o~ 'pa in D. Since there are 12! /(2% - 6!) conjugates of p, there are 2° - 6!
different as that could conjugate o to any of its conjugates. Viewing D as the group of
symmetries of a regular dodecagon, we see that there are seven conjugates of p in D:
the six reflections over perpendicular bisectors of a side, along with rotation by 180°.
Thus there are 2° - 6! - 7/24 double cosets of size 24 in 7. The remaining cosets are
all of size 48, s0 |7| = 2°-6! - 7/24 4+ (12! —25.6! - 7)/48. n

This result provides insight into the rareness of symmetric tone rows. The 2° - 6! - 7
as for which |Fa D| = 24 are exactly the tone rows that can be transformed onto them-
selves by some composite of transposition, retrograde, and/or inversion. An argument
similar to the foregoing proof reveals that 26 - 6! of these tone rows exhibit symmetry
under a composite of transposition and retrograde only. (These rows are palindromic,
as defined earlier.)

Transposition and inversion are both right actions on Si,, and D is the group gener-
ated by these two actions, so the set of all rows that can be formed from a row « using
transpositions and inversions is just the left coset o D. Since |« D| = | D| for all «, there
are no tone rows symmetric via these two transformations alone. The corresponding
geometric observation is that, although a mirror reflection may fix the lines of a clock
diagram, it will reverse the arrows (see, for example, Figure 1).

Likewise, inversion and retrograde will not, by themselves, transform a tone row
onto itself, because inversion fixes the first note and retrograde does not. Thus the
remaining 2° - 6! - 6 symmetric tone rows are mapped onto themselves by a composite
of transposition, retrograde, and inversion. (The row in Figure 1 is an example.)

Table 1 enumerates the symmetric row classes under transposition, retrograde, and
inversion.

TABLE 1. Rareness of symmetry under transposition, retrograde, and inversion.

Symmetry Cosetsize #of cosets % of cosets  #ofrows % of rows

T,R 24 1,920 0.019% 46,080  0.0096%
T,R, 1 24 11,520 0.115% 276,480  0.058%
none 48 9,972,480  99.87% 478,679,040 99.93%
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Under transposition, inversion, and retrograde, symmetric tone rows are quite rare.
If we also allow cyclic shift, the situation gets harder to analyze; however, we can
calculate the sizes of the double cosets Da D using the symbolic algebra programming
language GAP [4]. Table 2 lists the different coset sizes that occur, along with their
frequencies. Table 2 indicates that symmetry under all four transformations (indicated
by a coset size less than 576) is also quite unusual, although not as rare as it is without
cyclic shift.

TABLE 2. Rareness of symmetry under transposition, inversion,
retrograde, and cyclic shift.

Coset size  # of cosets % of cosets # of rows % of rows

24 2 0.00024% 48  0.00001%
48 2 0.00024% 9  0.00002%
72 6 0.00072% 432 0.00009%
96 17 0.0020% 1632 0.00034%
144 152 0.018% 21,888  0.0046%
192 11 0.0013% 2,112 0.00044%
288 8,545 1.02% 2,460,960  0.514%
576 827,282  98.84% 476,514,432 99.48%

Table 2 also shows that very small coset sizes are especially rare. For example, only
two cosets have size 24; these represent highly symmetric structures that are important
in music theory. One is the chromatic scale, e.g., (0,1,2,3,4,5,6,7,8,9,10,11),
whose diagram is the dodecagon. The other is the circle of fifths, e.g.,
0,7,2,9,4,11,6, 1,8, 3,10,5), whose diagram is the dodecagram. (In music a
“perfect fifth” is seven semitones, so the circle of fifths is defined with p; =7 + p;_;
mod 12.)

The GAP code for generating Table 2 is straightforward. To calculate the double
cosets Da D for « in S,, execute the following:

G:=SymmetricGroup(12);
D:=Group((1,2,3,4,5,6,7,8,9,10,11,12),(1,12)(2,11)(3,10)

(4,9)(5,8)(6,7));
x:=DoubleCosetRepsAndSizes(G,D,D);;
(Note that GAP uses the symbols 1, ... 12 instead of 0, ... , 11.) The list x is a collec-

tion of pairs: the first item of each pair is the coset representative, and the second item
is the size of the coset. The following functions return the total number of cosets, the
number of cosets of size 192, and a list of the coset representatives for all the size 192
cosets.

Size(x);

c192:=Filtered(x, L -> L[2]=192);;
Size(c192);

List(c192, L -> L[1]);

Given a representative of a double coset, the elements of the double coset are easy to
compute. For example,

AsList (DoubleCoset (D, (2,6)(3,11)(4,8)(5,9),D));

lists all of the elements in the coset DaD for « = (1 5)(2 10)(3 7)(4 8). Thus it is
straightforward to implement our mathematical recipe for generating symmetric rows.
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3. SYMMETRIC ROW CLASSES IN VIENNESE 12-TONE MUSIC. Under
transposition, retrograde, and inversion, symmetric row classes constitute just 0.13%
of the universe of possibilities. Yet they constitute 5% of the row classes in Schoenberg
(2 of 42) and 20% of the row classes used by Webern (4 of 21). It seems clear that
these composers liked symmetry. If they had chosen row classes at random, without
regard to symmetry, it is improbable that either composer would have used such a
large number of symmetric row classes. (For Schoenberg, the probability would be
.0015; for Webern, 1.25 x 1078.)°

Even when cyclic shift is allowed, just 1.16% of all row classes are symmetric. Yet
9% of the rows used by Berg display this property (2 of 23). Again, the probability
is low (.024) that Berg would have used so many symmetric row classes by chance
alone.’

The types of symmetry used by the Viennese composers are also of interest. Nei-
ther of the symmetric rows used by Schoenberg, and only one of the four symmetric
rows used by Webern, is a palindrome (symmetric under transposition and retrograde
alone). The rareness of palindromes in Webern has led one scholar to infer that Webern
preferred non-palindromic symmetry [3]. We cannot endorse this view, however, since
even in the universe of symmetric rows palindromes are outnumbered 6 to 1 (Table 1).
One of Berg’s symmetric rows, by the way, is also a palindrome; the other, as remarked
earlier, is symmetric under all four transformations (see Figure 4).

Although Viennese tone rows display above-chance levels of symmetry, more than
90% of them are not symmetric. Evidently most rows were chosen on the basis of other
criteria. This conclusion agrees with the judgment of music scholars, who have sug-
gested several other row types that may have interested these composers—including
“combinatorial,” “all-interval,” and “tonally colored” rows [2], [13].

Because Viennese composers had a variety of preferences, it can be hard to know
whether a row is symmetric because the composer wanted symmetry, or because the
composer wanted another property that happens to be related to symmetry. For ex-
ample, both Webern (once) and Schoenberg (twice) used rows that are symmetric only
when cyclic shift is allowed [10]. At first, this seems surprising: Webern never used
cyclic shift, and Schoenberg had abandoned it by the time of his cyclically symmetric
rows. However, both Schoenberg and Webern favored “hexachordally derived” rows
that could be broken into similar six-note halves [2]; here, that preference led to rows
that are symmetric using 6-fold cyclic shift (Cg).

Because other preferences may be confounded with symmetry, it seems reason-
able to ask whether Viennese rows are remarkably symmetric given the constraints
imposed by the composers’ other preferences. This question is hard to answer alge-
braically; however, an approximate answer can be obtained using statistical methods.
First, one generates rows from (say) 1000 randomly selected row classes.” Then, using
a statistical classification technique, one attempts to discriminate these random row
classes from those actually used by Viennese composers. Results using this approach
suggest that, even when other preferences are accounted for, Viennese tone rows still
display a significant penchant for symmetry [16].

SThese probabilities are based on a hypergeometric distribution with n = 9,985,920 row classes of which
r = 13,440 are symmetric (as in Table 1). For example, if Schoenberg had drawn 42 row classes from this
distribution, the probability that 2 or more would be symmetric is .0015.

This probability is based on a hypergeometric distribution with n = 836,017 row classes of which r =
8,735 are symmetric (as in Table 2).

"The simplest approach is to generate random rows, i.e., random permutations of {0, 1, ... , 11}. How-
ever, this will tend to underweight the symmetric rows, which have smaller row classes (cosets). One must
compensate for this underweighting, or avoid it by sampling row classes directly.
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